Installation¶
Requirements¶
- Python 3.8+
- pip or conda
Dependencies¶
The project requires the following main packages:
| Package | Purpose |
|---|---|
| scikit-learn | Base ML models, preprocessing |
| xgboost | Gradient boosting models |
| lightgbm | Light gradient boosting |
| catboost | Categorical boosting |
| PyTorch | Neural network models |
| PyWavelets | Wavelet decomposition |
| scipy | Statistical functions |
| pandas | Data manipulation |
| numpy | Numerical operations |
Installation Steps¶
1. Clone the Repository¶
2. Create Virtual Environment (Recommended)¶
3. Install Dependencies¶
4. Verify Installation¶
Optional: GPU Support¶
For faster training of neural network models:
Troubleshooting¶
CatBoost Compatibility
If you encounter issues with CatBoost on sklearn 1.6+, the meta_stacking_7models detector automatically falls back to ExtraTrees.
Memory Requirements
Some models (especially meta_stacking_7models) require significant memory. Ensure at least 8GB RAM available.