References¶
Academic references and citations used throughout this project.
Financial Machine Learning¶
- Lopez de Prado, M. (2018). Advances in Financial Machine Learning. Wiley.
Statistical Methods¶
-
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates.
-
Welch, B. L. (1947). "The Generalization of 'Student's' Problem when Several Different Population Variances are Involved." Biometrika, 34(1/2), 28–35. DOI
-
Mann, H. B., & Whitney, D. R. (1947). "On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other." The Annals of Mathematical Statistics, 18(1), 50–60. DOI
-
Kolmogorov, A. N. (1933). "Sulla determinazione empirica di una legge di distribuzione." Giornale dell'Istituto Italiano degli Attuari, 4, 83–91.
-
Levene, H. (1960). "Robust tests for equality of variances." In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, I. Olkin et al., Eds. Stanford University Press, pp. 278–292.
Change Point Detection¶
-
Page, E. S. (1954). "Continuous Inspection Schemes." Biometrika, 41(1/2), 100–115. DOI
-
Adams, R. P., & MacKay, D. J. C. (2007). "Bayesian Online Changepoint Detection." arXiv:0710.3742. arXiv
-
Sharifi, A., Sun, W., & Seco, L. A. (2025). "Detecting Structural Breaks in Dynamic Environments Using Reinforcement Learning and Bayesian Change Point Models." SSRN. SSRN
Deep Learning¶
-
Vaswani, A. et al. (2017). "Attention Is All You Need." Advances in Neural Information Processing Systems, 30. arXiv
-
Hochreiter, S., & Schmidhuber, J. (1997). "Long Short-Term Memory." Neural Computation, 9(8), 1735–1780.
-
Wang, Y. et al. (2024). "TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables." NeurIPS. NeurIPS
-
Liu, Y. et al. (2024). "ExoTST: Exogenous-Aware Temporal Sequence Transformer." arXiv:2410.12184. arXiv
-
Audrino, F. et al. (2024). "Integrating LSTM and Transformer-Based Sentiment for Stock Price Forecasting." Journal of Economic Analysis, 4(3). Link
Machine Learning¶
-
Chen, T., & Guestrin, C. (2016). "XGBoost: A Scalable Tree Boosting System." KDD, 785–794. arXiv
-
Breiman, L. (2001). "Random Forests." Machine Learning, 45(1), 5–32.
-
Friedman, J. H. (2001). "Greedy Function Approximation: A Gradient Boosting Machine." The Annals of Statistics, 29(5), 1189–1232.
-
Ke, G. et al. (2017). "LightGBM: A Highly Efficient Gradient Boosting Decision Tree." Advances in Neural Information Processing Systems, 30.
-
Wolpert, D. H. (1992). "Stacked Generalization." Neural Networks, 5(2), 241–259.
Reinforcement Learning¶
-
Watkins, C. J. C. H., & Dayan, P. (1992). "Q-learning." Machine Learning, 8(3-4), 279–292.
-
Mnih, V. et al. (2015). "Human-level control through deep reinforcement learning." Nature, 518(7540), 529–533.
Signal Processing¶
-
Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM.
-
Song, J. H., Lopez de Prado, M., Simon, H., & Wu, K. (2014). "Exploring Irregular Time Series Through Non-Uniform Fast Fourier Transform." Proceedings of the International Conference for High Performance Computing, IEEE. SSRN